From Simplest Recursion to the Recursion of Generalizations of Cross Polytope Numbers
نویسندگان
چکیده
My research project involves investigations in the mathematical field of combinatorics. The research study will be based on the results of Professors Steven Edwards and William Griffiths, who recently found a new formula for the cross-polytope numbers. My topic will be focused on ”Generalizations of cross-polytope numbers”. It will include the proofs of the combinatorics results in Dr. Edwards and Dr. Griffiths’ recently published paper. E(n,m) and O(n,m), the even terms and odd terms for Dr. Edward’s original combinatorial expression, are two distinct combinatorial expressions that are in fact equal. But there is no obvious algebraic evidence to show that they are equal. There are induction proofs in the paper. But I wondered if there is a better way to explain that at the undergraduate level, so I proved it algebraically with combinatorial identities. Ek(n,m) and Ok(n,m), which are the generalized forms for E(n,m) and O(n,m), are in fact equal and share the same recurrence formula with E(n,m) and O(n,m). We can call those numbers from the table of Ek and Ok the generalizations of the cross-polytope numbers.
منابع مشابه
Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملAn Algorithm to Obtain Possibly Critical Paths in Imprecise Project Networks
We consider criticality in project networks having imprecise activity duration times. It is well known that finding all possibly critical paths of an imprecise project network is an NP-hard problem. Here, based on a method for finding critical paths of crisp networks by using only the forward recursion of critical path method, for the first time an algorithm is proposed which can find all pos...
متن کاملFrequency Estimation of Unbalanced Three-Phase Power System using a New LMS Algorithm
This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017